BASIS DAN DIMENSI 2


Basis
Andaikan V adalah sembarang ruang vektor dan S = {u1, u2,…,un} adalah himpunan berhingga vektor-vektor pada V, S dikatakan basis untuk ruang V jika :
  •  S bebas linier
  •  S membangun V
Dimensi
Sebuah ruang vektor dikatakan berdimensi berhingga, jika ruang vektor  V mengandung sebuah himpunan berhingga vektor S = {u1, u2,…,un} yang membentuk basis. Dimensi sebuah ruang vektor V yang berdimensi berhingga didefinisikan sebagai banyaknya vektor pada basis V.
Contoh :
Misalkan, B={i,j,k} dengan i=[1,0,0], j=[0,1,0], dan k=[0,0,1]. B adalah basis baku untuk R3. Karena banyaknya vektor yang membentuk basis B adalah 3, maka R3 berdimensi tiga.

Ruang Hasil Kali Dalam
Sebuah hasil kali dalam (inner product) pada ruang vektor riil V adalah fungsi yang mengasosiasikan bilangan riil [u,v] dengan masing-masing pasangan vektor u dan v pada V sedemikian rupa sehingga aksioma-aksioma berikut ini :
  •  [u,v] = [v,u]                                       (aksioma simetri)
  •  [u+v,w] = [u,w] + [v,w]                (aksioma penambahan)
  •  [ku,v] = k[u,v]                                  (aksioma kehomogenan)
  •  [u,u] ≥ 0 dan [u,u] = 0 Û u=0    (aksioma kepositifan)

Contoh :
Jika u = [u1,u2,…,un], dan v = [v1,v2,…,vn] adalah vektor-vektor pada Rn, maka :
                  [u,v] = u•v = u1v1 + u2v2 + … + unvn
adalah hasil kali dalam pada ruang Euclides Rn. Dan u dan v dikatakan ortogonal jika [u,v] = 0. Jika u ortogonal terhadap setiap vektor pada V, maka u dikatakan ortogonal terhadap V.

Basis Ortonormal
Sebuah himpunan vektor pada ruang hasil kali dalam dikatakan ortogonal jika semua pasangan vektor-vektor yang berada dalam himpunan tersebut ortogonal. Sebuah himpunan ortogonal yang setiap vektornya panjangnya 1 disebut ortonormal.
Contoh :
S={u1,u2,u3} dengan u1=[1,2,1], u2=[1,-1,1], dan u3=[1,0,-1]. Himpunan S adalah ortogonal pada R3, karena [u1,u2]=[u1,u3]=[u2,u3]=0
CATATAN:
  • Jika S = {u1, u2,…,un} adalah adalah basis ortonormal untuk sebuah ruang hasil kali dalam V, dan jika x sembarang vektor di V, maka :
                x = [x,u1]u1  + [x,u2]u2 +  … + [x,un]un  
  • Misalkan V ruang hasil kali dalam dan {u1,u2,…,un} himpunan ortonormal Jika W ruang yang dibangun oleh u1,u2,…,un maka setiap vektor x dalam V dapat dinyatakan dengan : x = v + w dimana :
            v = [v,u1]u1  + [v,u2]u2 +  … + [v,un]un  

istilah ortogonal sebenarnya mempertegas bahwa proyeksi yang dilakukan haruslah membentuk hubungan tegak lurus antara ujung vektor yang diproyeksikan dengan ujung vektor hasil proyeksi.

Proses Gram-Schmidt
Setiap ruang hasil kali dalam berdimensi berhingga taknol, mempunyai sebuah basis ortonormal.
Misalkan S={u1,u2,…,un} basis untuk ruang hasil kali dalam V, algoritma  untuk menentukan ortonormal B={v1,v2,…,vn} untuk V adalah :



Perubahan Basis
Misalkan S={u1,u2,…,un} basis lama ruang vektor V, dan B={v1,v2,…,vn} basis baru untuk ruang vektor V. Misalkan pula [x]S matrik koordinat x relatif terhadap S dan [x]B matrik koordinat x relatif terhadap basis B. Hubungan antara [x]S dan [x]B diberikan oleh persamaan :



P adalah matrik transisi dari basis baru B ke basis lama S, dimana kolom-kolom P adalah matrik-matrik koordinat dari vektor-vektor basis baru relatif terhadap basis lama, yaitu :



Contoh :

S={u1,u2,u3} basis lama dan B={v1,v2,v3} basis baru untuk R3, dimana u1=[1,–1,–1], u2=[–1,2,3], u3=[1,1,2], dan v1=[2,1,2], v2=[3,2,2], v3=[1,2,-1]. Jika x=[2,-1,3] berapa [x]B secara tidak langsung.





Komentar